首页 好物正文

完全平方数都有哪些性质公式(证明多项式是完全平方数)

admin 好物 2024-01-03 04:29:34 317 0

完全平方数定义

指两个相同数相乘所得的数,例如:16=4×4,16就是一个完全平方数(或称平方数),还可以理解为一个数如果是另一个整数的平方,那么这个数就是完全平方数。表达式为:A=a²。

1~1000内的完全平方数

完全平方数的性质

① 完全平方数的个位数字只能是0,1,4,5,6,9;不可能出现 2,3,7,8

在数论的各种问题中,确定末位数字十分重要。

② 完全平方数的因数个数为奇数。这个可以通过因数个数公式来推理证明。

③ 完全平方数除以5的余数只能是0,1,4,可以通过性质①来证明。

④ 完全平方数除以3的余数只能是0,1。证明如下。

⑤ 凡个位数字是5,但末两位数字不是25的自然数不是完全平方数;

尾数只有奇数个“0”的自然数(不包括0本身)不是完全平方数;

⑥ 奇数的平方的个位数字为奇数,而十位数字为偶数;

⑦ 如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数;

⑧ 完全平方数的各位数字之和只能是0,1,4,7,9;(多位数)

⑨ 在两个相邻的整数的平方数之间的所有整数都不是完全平方数;

⑩ 任何四个连续整数的乘积加1,必定是一个完全平方数。

一、完全平方数的概念

完全平方数是这样的一种数,它可以写成一个正整数的平方。例如36等于6×6,25等于5×5,121等于11×11。

二、完全平方数的性质

性质1:从1开始的n个奇数的和是一个完全平方数。

应用等差数列之事即可证明。

性质2:每一个完全平方数的末位数是0、1、4、5、6或9。

这其实是显而易见的。末位数也就是个位数,我们只需要计算个位数的乘积即可。性质3:每一个完全平方数,要么能被3整除,要么减1能被3整除。

先观察下面这些数字。

1、2、3;4、5、6;7、8、9;10、11、12;因为讨论的是与3有关的整除性质,我们把正整数分为3个类型分别进行讨论。性质4:每一个完全平方数,要么能被4整除,要么减1能被4整除。

这条性质也不难证明。一个正整数,要么是奇数,要么就是偶数。对于两个相同的偶数相乘,乘积必然能被4整除;下面考虑奇数的情况。性质5:每一个完全平方数,要么能被5整除,要么加1或减1能被5整除。

仿照证明性质3的方法进行分类讨论。

健康食品 产品推荐 洗护测评 知识科普

版权声明 1、本网站名称:三九知识
2、本站永久网址:www.1puu.com
3、本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任
4、如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 aaw4008@foxmail.com 网站右下角【投诉删除】可进入实时客服
5、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报
本文链接:http://1puu.com/post/55284.html